KI Brain Imaging in Neuroscience

A community promoting interaction, sharing ideas, collaboration and education.

◆ロ ▶ ◆帰 ▶ ◆ ヨ ▶ ◆ ヨ ▶ ● の Q @

- Create a platform to share activities and resources.
- Provide a mailing list for announcements.
- Organize activities centered on methods issues.

KI Brain Imaging in Neuroscience

- Web-page: www.kibin.se
- Email-list: KI-BIN@EMAILLIST.KI.SE To join:
 - register at: http://kibin.se/register.html
 - send an email to: register@kibin.se
- Calendar of activities: http://kibin.se/calendar.html
- Twitter: https://twitter.com/KarolinskaKIBIN

About KIBIN

KIBIN is a community for researchers at Karolinska Institutet using brain imaging within neuroscience,

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ●

focusing on MRI, PET, EEG, and MEG.

KIBIN was initiated in the fall 2018 to serve as a platform for interaction, sharing ideas, collaboration and education.

Reinforcement learning in neuroscience - I

Rita Almeida

October 2018

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Reinforcement learning

Simple definition:

Learning by trial-and-error what to do in a given situation in order to maximize total reward and minimize total punishment.

◆ロ ▶ ◆帰 ▶ ◆ ヨ ▶ ◆ ヨ ▶ ● の Q @

Goal-directed learning from interactions.

Example

Finding a short path in a maze.

・ロト・日本・日本・日本・日本・日本

Example

Learning what stimulus is associated with higher reward.

Figure adapted from Morris et al. 2005.

ヘロン 人間 とくほとくほとう

э

Example

 Learning what sequence of stimulus choice is associated with higher reward.

Figure adapted from Daw et al. 2011.

Reinforcement learning in different fields

Reinforcement learning in neurosience and psychology

Learning

Neuroscience of learning:

- Mechanisms:
 - Activity dependent synaptic plasticity
 - Long term potentiation and depression (LTP, LTD)

◆ロ ▶ ◆帰 ▶ ◆ ヨ ▶ ◆ ヨ ▶ ● の Q @

- Hebbian learning
- Dopamine
- Acetylcholine...
- Structures and circuits:
 - Basal ganglia...
- Cognitive neuroscience / psychology:
 - Implicit versus explicit
 - Associative versus non-associative
 - Classical and operant conditioning...

Key aspects of RL

Learning problem where an agent interacts with the environment to achieve a goal.

- Sensation: observe the state of the environment
- Action: Take actions that affect the state of the environment
- Goal: Relating to reward

▲□▶▲□▶▲□▶▲□▶ □ ● のへで

Classical conditioning Pavlovian paradigm:

Figure from http://catalog.flatworldknowledge.com

∍

► Does it relate with reinforcement learning?...

Classical conditioning

How does it relate with reinforcement learning?

- learning of values of stimuli through experience
- learning based on reward
- learning without instruction
- no acting!

◆ロ ▶ ◆帰 ▶ ◆ ヨ ▶ ◆ ヨ ▶ ● の Q @

Rescorla-Wagner model of learning

 Learning happens when events are not predicted.
 Change in value is proportional to difference between actual and predicted outcome (prediction error).

For the Pavlovian paradigm:

$$V_{new}(S) = V_{old}(S) + \eta(r - V_{old}(S))$$

$$V(S) \leftarrow V(S) + \eta \quad \delta$$

- S the conditioned stimuli - sound
- r the unconditioned stimulus - food
- η learning rate

Predictions due to different stimuli are summed linearly.

$$V_t(S_i) = V_{t-1}(S_i) + \eta(r - \sum_j V_{t-1}(S_j))$$

Rescorla-Wagner explains other types of conditioning: Blocking

$$\begin{array}{rcl} S_1+r & \Longrightarrow & S_1 \to r' \\ \\ S_1+S_2+r & \Longrightarrow & S_2 \to .' \\ & & S_1 \to r' \end{array}$$

▲ロ▶▲圖▶▲≣▶▲≣▶ ▲国▼ のへの

Rescorla-Wagner explains overshadowing

$$S_1 + S_2 + r \implies S_1 \to \alpha_1 r'$$
$$\implies S_2 \to \alpha_2 r'$$

◆ロト ◆聞 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○のへで

Rescorla-Wagner explains inhibitory conditioning

(문) (문) 문

596

Rescorla-Wagner model of learning

The Rescorla-Wagner model explains other types of conditioning:

- blocking
- overshadowing
- inhibitory

The Rescorla-Wagner model also has shortcomings:

- does not account for the sensitivity of conditioning to temporal contingencies,
- it does not explain second order conditioning $(S_1 \rightarrow r \quad S_2 \rightarrow S_1 \rightarrow r \quad S_2 \rightarrow r'),$
- it does not explain extinction of inhibition

Temporal difference learning

Idea of RL: Maximize total reward, not only immediate reward.

- Predict all future reward.
- Total reward depends on a sequence of choices.

Value of a sate *S* is the expected future reward. Given $S_t = s$:

$$V(s) = E[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + ... | S_t = s]$$

where $\gamma \leq 1$ discounts the effect of rewards distant in time and *t* is time or step within a trial.

And in a recursive form:

$$V(s) = E[r_t|S_t = s] + \gamma E[V(s_{t+1})|S_t = s].$$

Temporal difference learning

Then, a prediction error can be defined as:

$$\delta = E[r_t|S_t] + \gamma E[V(S_{t+1})|S_t] - V(S_t).$$

If δ is estimated it can be used in the update rule:

NewEstimate ← *OldEstimate* + *LearningRate*[*Target* - *OldEstimate*]

Applied to the value:

 $V(s) \leftarrow V(s) + \eta \quad \delta$

・ロト・西ト・モート ヨー うへの

Temporal difference learning

Problem: to calculate E[] one needs $P(r|s_t = s)$ and $P(s_{t+1}|s_t = s)$.

- This knowledge is usually not available.
- Information can be accumulated by sampling.

The current values r_{t+1} and $V_t(s_{t+1})$ can be used:

$$V(s_t) \leftarrow V(s_t) + \eta(r_{t+1} + \gamma V(s_{t+1}) - V(s_t))$$

And the temporal difference prediction error is:

$$\delta = r_{t+1} + \gamma V(s_{t+1}) - V(s_t)$$

 Over time total expected values of events can be learned even in stochastic environments with unknown dynamics.

Operant or instrumental conditioning

Introducing actions

Figure from Scientific American.

Animals will behave in order to get reward.

・ロト・西ト・西ト・西ト・日・

Reinforcement learning

Learning by trial-and-error which action to choose.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

- Learning values of actions for a given state.
- Policy for behavior.

Elements of RL

Policy: mapping between perceived states and actions.

Can be stochastic.

Reward function: mapping between state (or state-action) to a value summarizing the desirability of that state.

- Agent wants to maximize the reward.
- Directly given by environment.
- Can be stochastic.

Value function: mapping between state to the long term desirability of that state.

- Takes into account total amount of reward the agent expects to accumulate from that state on.
- Action choices are made based on value.
- Value is estimated from all observations the agent does.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Model of the environment: (optional) a model of the behavior of the environment.

Action selection: exploration vs exploitation

Learning requires a trade-off between:

- Exploitation agent exploits what is known and chooses actions with greatest estimated values (greedy actions).
- Exploration agent explores actions in order to make better future selections. Assures that:
 - the agent does not get stuck with a good but not optimal action.
 - the expected reward is properly estimated in a stochastic task.

the agent adapts when the task is non-stationary.

Example - n-armed bandit problem

- Repeated plays action selections.
- Each play *n* possible actions.
- After an action a reward is received.
- Each action is associated with a stationary probabilistic reward.
- Aim is to achieve maximal reward over a number of plays.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ● ● ●

Estimating action-values Q(a)

Sample-average method: estimating Q(a) as the average reward previously received when choosing a.
 If at step t action a has been chosen k_a times:

$$Q_t(a) = \frac{r_1 + r_2 + \dots + r_{k_a}}{k_a}$$

Incremental method: updating the estimated Q(a) after each step.

If Q_k is the average of the first k rewards

$$Q_{k+1} = Q_k + \frac{1}{k+1}(r_{k+1} - Q_k)$$

◆ロ ▶ ◆帰 ▶ ◆ ヨ ▶ ◆ ヨ ▶ ● の Q @

Update rule

$$Q_{k+1} = Q_k + \frac{1}{k+1}(r_{k+1} - Q_k)$$

Generic update rule:

 $NewEstimate \leftarrow OldEstimate + LearningRate[Target - OldEstimate]$

◆ロ ▶ ◆帰 ▶ ◆ ヨ ▶ ◆ ヨ ▶ ● の Q @

- Similar rules are common in RL.
- [Target OldEstimate]: error of the estimate
- LearningRate: size of update

Softmax action selection

Idea: probability of choosing an action is proportional to its estimated value

Action *a* is chosen on play *t* with probability:

 $\frac{e^{Q_t(a)/\beta}}{\sum_{b=1}^n e^{Q_t(b)/\beta}}$

- $\beta \ge 0$ is the temperature
- large β : all actions are chosen with similar probabilities

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• $\beta \rightarrow 0$: greedy action selection

2-armed bandit

Example: Subject chooses between left or right (L or R).

$$P(L)_{t} = \frac{e^{Q_{t}(L)/\beta}}{e^{Q_{t}(L)/\beta} + e^{Q_{t}(R)/\beta}}} \qquad P(R)_{t} = \frac{e^{Q_{t}(R)/\beta}}{e^{Q_{t}(L)/\beta} + e^{Q_{t}(R)/\beta}}$$

$$P(L)_{t} = \frac{1}{1 + e^{-(Q_{t}(L) - Q_{t}(R))/\beta}}$$

◆ロト ◆聞 ト ◆臣 ト ◆臣 ト ○臣 - のへぐ